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Abstract. We use Ahlfors’ definition of Schwarzian derivative for curves in eu-
clidean spaces to present new results about Möbius or projective parametriza-
tions . The class of such parametrizations is invariant under compositions
with Möbius transformations, and the resulting curves are simple. The anal-
ysis is based on the oscillatory behavior of the associated linear equation
u′′ + 1

4
k2u = 0, where k = k(s) is the curvature as a function of arclength.

1. Introduction

In this paper we continue the work in [4] and [3] based on Ahlfors’ definition
of Schwarzian derivative for curves γ in euclidean space [1], where we developed
sharp bounds on the real part of the Schwarzian which imply that γ is simple or
unknotted. In [7] Kobayashi and Wada consider a Schwarzian and a conformal
Schwarzian derivative for curves in arbitrary Riemannian manifolds. The two op-
erators coincide when the metric is Einstein, and in the euclidean space one can
recover from it Ahlfors’ operator. In [6] the author defines the projective structure
of curves in arbitrary manifolds based on what could be called Möbius or projective
parametrizations. The purpose of this paper is to study Möbius parametrizations
in Rn and offer new perspectives and results. The class of Möbius parametriza-
tions will be preserved under composition with Möbius transformations in the
range or in the parameter. In general, a curve of infinite length will not admit a
Möbius parametrization globally, but rather only on subarcs described in terms
of the arclength parameter s and the curvature k(s) exactly as those on which
some solution of the linear equation u(s) + 1

4k2(s)u(s) = 0 does not vanish. Also,
any such portion will not intersect itself, a fact that by different means has been

The author was partially supported by Fondecyt Grant # 1071019.



2 Martin Chuaqui

established in [6] in the general setting. As as consequence, we will show certain
infinite ends of curves in Rn to be simple. The parametrization will have order of
contact three with a canonically chosen parametrization of the osculating circle
by a Möbius map. Finally, by piecing together the Möbius parametrizations of
consecutive portions of a curve of infinite length we will establish a theorem that
accounts for the number of zeros of the equation u′′ + pu = 0 for an arbitrary
continuous function p.

2. Möbius Parametrizations

Let f : (a, b) → Rn be a C3 curve with f ′ 6= 0, and let X ·Y stand for the euclidean
inner product of vectors X, Y in Rn and |X|2 = X ·X. As was pointed out in [4],
it is easy to see that the real part of Ahlfors’ Schwarzian, defined by

S1f =
f ′ · f ′′′
|f ′|2 − 3

(f ′ · f ′′)2
|f ′|4 +

3
2
|f ′′|2
|f ′|2 ,

can be written in terms of the velocity v = |f ′| and the curvature k of the trace
of f as

S1f =
(

v′

v

)′
− 1

2

(
v′

v

)2

+
1
2
v2k2 , (2.1)

and that this expression is invariant under the Möbius transformations of Rn∪{∞}.
Note that S1f = Ss+ 1

2v2k2, where s = s(x) is arclength as a function of x ∈ (a, b).
This definition coincides with the 0-part of the Schwarzian defined in [7] (see also
[Lemma 2.1, 6]).

For a real valued function h with h′ 6= 0, Sh is the usual Schwarzian

Sh =
(

h′′

h′

)′
− 1

2

(
h′′

h′

)2

.

We recall the addition formula

S(h ◦ g) = (Sh ◦ g)(g′)2 + Sg , (2.2)

and in particular,
Sh = −Sg(h′)2 , g = h−1 , (2.3)

because the identity has vanishing Schwarzian.

Our main result in [4] was:

Theorem A. Let p = p(x) be a continuous real-valued function on an open interval
I such that any nontrivial solution of u′′ + pu = 0 has at most one zero on I. Let
f : I → Rn be a C3 curve with f ′ 6= 0. If S1f ≤ 2p, then f is one-to-one on I
and admits a spherically continuous extension to the closed interval, which is also
one-to-one unless the trace of f is a circle, in which case S1f ≡ 2p.

We give the following definition.
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Definition 2.1. We say that f : I → Rn is a Möbius parametrization, or M -
parametrization, if S1f = 0. We say that f is an M -parametrization of γ if in
addition f(I) = γ. The interval I may be a finite, semi-infinite or even equal to R.

Theorem 2.2. If f : I → Rn is an M -parametrization then the image f(I) is
a simple curve. M -parametrizations are preserved under composition in range or
domain with Möbius transformations.

Proof. The first claim follows immediately from Theorem A since the equation
u′′ = 0 on any interval admits non-trivial solutions with at most one zero. For
a different proof, see also [Theorem, p.2, 6]. For the second claim, let f be an
M -parametrization. Because S1 is invariant under Möbius transformations T of
Rn ∪ {∞}, then T ◦ f is also an M -parametrization. On the other hand, because
of the chain rule

S1(f ◦ σ) = [(S1f) ◦ σ](σ′)2 + Sσ ,

it follows that f ◦ σ remains an M -parametrization whenever σ : R ∪ {∞} →
R ∪ {∞} is Möbius. ¤

Throughout the paper, k = k(s) will denote a non-negative function defined
for all s ∈ R and Γ ⊂ Rn a curve (of infinite length) with curvature k(s). Let
φ = φ(s) be an arclength parametrization of Γ.

Theorem 2.3. Let Γ1 = φ((s1, s2)) be an arc of Γ, ∞ ≤ s1 < s2 ≤ ∞. Then
there exists an M -parametrization of Γ1 if and only if some solution of u′′(s) +
1
4k2(s)u(s) = 0 does not vanish on (s1, s2).

Proof. Suppose first there exists an M -parametrization f of an arc Γ1 ⊂ Γ. Then

S1f = Ss(x) +
1
2
v2k2(s(x)) = 0 . (2.4)

Let x = h(s) be the inverse of s = s(x). Then, by (2.3),

Sh = −(Ss)(h′)2 =
1
2
k2 . (2.5)

It is standard that u(s) = (h′)−1/2 > 0 is a solution of

u′′ +
1
2
(Sh)u = 0 ,

as desired.
On the other hand, let u(s) be a solution of u′′(s) + 1

4k2(s)u(s) = 0 which is
positive on (s1, s2). Fix s0 ∈ (s1, s2) and let

x = h(s) =
∫ s

s0

u−2(t)dt . (2.6)

A simple calculation shows that Sh = 1
2k2(s), therefore

f(x) = φ(s(x))
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has
S1f = Ss +

1
2
v2k2 = −(Sh)(h′)−2 +

1
2
v2k2 = 0

because v = (h′)−1. ¤
Recall the curve Γ and a subarc Γ1 = φ((s1, s2)).

Theorem 2.4. Suppose f is an M -parametrization of Γ1 defined on some interval I.
Then for some σ Möbius, f ◦σ can be extended to I0 = R as an M -parametrization
of an arc Γ2 with Γ1 ⊂ Γ2 ⊂ Γ. Furthermore, Γ = Γ2 if and only if k(s) = 0 for all
s and Γ is a line.

Proof. Let λ(x) = v−1/2(x) = |f ′(x)|−1/2. Then

λ′′ +
1
2
(Ss)λ = 0 ,

which according to (2.4) corresponds to

λ′′(x) =
1
4
λ−3(x)k2(s(x)) . (2.7)

Any positive solution of (2.7) is convex. There are two possibilities:

(i) λ has one critical point at some x0 ∈ (a, b);
(ii) λ is either increasing or decreasing on (a, b).

Suppose (i). By convexity, λ(x) grows at least at linear rate when moving away
from x0 in either direction. This implies that both integrals

∫ x0

a

λ−2(x)dx ,

∫ b

x0

λ−2(x)dx (2.8)

are finite. But λ−2 = |f ′|, and therefore, Γ1 is of finite length. Because k(s)
is continuous and defined for all s, we see from (2.7) that λ′(x) has a limit as
x → a, b. This implies the same conclusion for λ(x) itself. We conclude that the
solution λ can be continued beyond both endpoints a, b. In light of (2.7) and the
linear rate of growth of λ(x), we see that λ′′(x) will remain integrable, showing
that λ′(x), and thus λ(x), cannot become infinite at some finite x. This proves
that λ can be continued for all x as a solution of (2.7). In other words, f can be
extended to all of R as an M -parametrization of some larger arc Γ2 ⊂ Γ of finite
length.

Suppose now (ii). The argument is the same in each case, and we assume that
λ is decreasing. The previous analysis applied moving to the left shows that the
solution λ can be continued to −∞. In other words, f can be extended to (−∞, b)
as an M -parametrization of some larger subarc of Γ. Because λ > 0 is decreasing,
limx→b− λ(x) = c exists.

Suppose c = 0. Then, by convexity, λ(x) ≤ m(b − x) for some m > 0 as
x → b−. Hence ∫ b

λ−2(x)dx = ∞ ,
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therefore Γ1 extends infinitely long, in this case, s2 = ∞. Consider g = f ◦ σ with

σ(y) = b− 1
y

.

Then g is an M -parametrization defined on (0,∞). Let µ be the solution of (2.7)
corresponding to g. Then µ must remain decreasing, for otherwise

∫ b

µ−2(y)dy < ∞ ,

contradicting the fact that s2 = ∞. But then our previous analysis is applicable
to the left end point y = 0, to conclude that the solution µ can be extended to
−∞. This proves that g = f ◦ σ can be defined on R as an M -parametrization of
some arc Γ2 ⊂ Γ.

Suppose now c > 0. Because λ is decreasing and convex, it follows that
limx→b λ′(x) exists. Therefore, (2.7) again can be continued to the right. It will
either remain decreasing for all x, will tend to 0 at some b1 > b or will reach
a point x0 > b where λ(x0) > 0 and λ′(x0) = 0. In the first case, f can be
extended to an M -parametrization of an arc Γ2 ⊂ Γ that has infinite length in
one direction. In the second case, we repeat the analysis above for the case when
c = 0 to conclude that some Möbius reparametrization f ◦ σ is defined on all of
R as an M -parametrization of a semi-infinite arc Γ2. In the third case, f will be
defined on all of R as an M -parametrization of some arc Γ2 that has finite length.

We see from this discussion that the only way to have Γ2 = Γ, that is, to have
Γ2 be extended infinitely long in both directions, is that the solution λ defined on
all of R does not become increasing as x → ±∞. Because λ is convex, this forces
λ to be constant, that is, k(s) = 0 for all s. This finishes the proof. ¤

It is well known that the absolute cross-ratio of four points in Rn, defined by

|(p1, p2, p3, p4)| = |p1 − p3| |p2 − p4|
|p2 − p4| |p2 − p3| ,

is Möbius invariant (see [Ah, Proposition 2]). By appealing to the relationship
between the operator S1 and the infinitesimal distortion of cross-ratio ([Ah, p.14] or
[ChG, Theorem A]), it follows that the restriction of any Möbius transformation of
Rn to a line is an M -parametrization, that is, the restriction of Möbius transforma-
tions to lines provide M -parametrizations of circles.

Let f be an M -parametrization of an arc Γ1 ⊂ Γ, and let Cp be the osculating
circle to Γ1 at a point p = f(x0). Let us identify R with the first axis in Rn, and let
T be any Möbius of Rn with the property that T (R) maps into Cp with T (0) = p.
Let σ be a Möbius map of the form

σ(x) =
αx

1 + βx
.
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It is easy to see that α, β can be chosen in a way that the M -parametrization Tf, p

of Cp given by Tf, p = T ◦ σ satisfies

Tf, p(0) = p , |T ′f, p(0)| = |f ′(x0)| , |T ′f, p|′(0) = |f ′|′(x0) . (2.9)

We call Tf, p the canonical M -parametrization of the osculating circle Cp.

Theorem 2.5. The canonical M -parametrization Tf, p of the osculating circle Cp

satisfies

|T ′f, p|′′(0) = |f ′|′′(x0) .

Proof. Because f and Tf, p are M -parametrizations, the functions v = |f ′| and
w = |T ′f, p | have

(
v′

v

)′
− 1

2

(
v′

v

)2

= −1
2
v2k2

Γ1
,

(
w′

w

)′
− 1

2

(
w′

w

)2

= −1
2
w2k2

Cp
.

But v(x0) = w(0), v′(0) = w′(0) by (2.9), and because kΓ1 = kCp at p , it follows
that v′′(x0) = w′′(0), as claimed. ¤

3. Infinite Ends

In this section we will consider curves of infinite length that allow a Möbius parame-
trization. An elementary way to tell than an infinite end γ of a curve is simple is
that ∫

γ

k(s)ds < π .

The integral represents the length of the curve L in Sn traced out by the unit
tangent vector. The estimate above forces L to stay within one hemisphere, that
is, (d/ds)[γ · d̂ ] > 0 for some unit vector d̂. This implies that γ is simple.

In light of Theorem 2.4, with the exception of lines, curves admitting an M -
parametrization can extend infinitely long only in one direction. Simple models
are based on curvature functions of the form

k(s) =
c

sα
,

defined for s > 0. Here c, α > 0 are constants.

Theorem 3.1. Let γ(s) be an arc-length parametrization of a curve in Rn defined
for 0 < s < ∞ with curvature k(s). If

k(s) ≤ 1
s

then γ(s) admits an M -parametrization and is therefore simple.
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Proof. The solutions of u′′ + 1
4s2 u = 0 are of the form u(s) =

√
s(a + b log(s)). In

particular, u0(s) =
√

s is non-vanishing. Since k(s) ≤ 1/s, there exists a positive
solution of u′′+ 1

4k2u = 0, which shows that γ admits an M -parametrization, and
is hence simple.

¤
Note that in the case when k(s) = 1/s the integral∫ ∞

0

k(s)ds

is divergent at both 0 and ∞. It is interesting that the equation u′′ + c
4s2 u = 0

becomes oscillatory whenever c > 1 (see, e.g., [5, Theorem 7.1). Planar curves
with such a curvature function will remain simple (see below) but will not admit a
global M -parametrization. It follows again by Sturm comparison that, for α > 1,
some infinite end of a curve with k(s) = c/sα will admit an M -parametrization,
whereas for α < 1 this will never be the case.

The planar curves with k(s) = c/s can be found explicitly, and are given
after rotation and translation, by

x(s) =
s√

1 + c2
[ cos(c log(s)) + c sin(c log(s)) ] ,

y(s) =
s√

1 + c2
[ sin(c log(s))− c cos(c log(s)) ] .

They are simple because x(s)2 + y2(s) = s2/(1 + c2).

Perhaps one would be tempted to believe that any curve with k(s) ∼ c/s,
s > 0, is simple. But there is a curve with c1/s ≤ k(s) ≤ c2/s which is not simple.
In the example above, it is probably the very regular behavior of the curvature
that prevents self-intersections. The example is given by

γ(t) = eat(1 + eit) , a > 0 .

Then γ(t) = 0 for t = (2k + 1)π. The parametrization is regular in the sense that
γ′(t) = eat(a+(a+ i)eit) 6= 0 because |a+(a+ i)eit| ≥ |a+ i|−a > 0. We see that
e−at|γ′(t)| is 2π-periodic, hence s(t) ∼ ceat as t →∞. Similarly, one can see that
e−atk(t) is 2π-periodic. In addition, a simple calculation shows that γ′′(t)/γ′(t) is
real iff

ia(a + i)eit + i(a2 + 1)
is real. But |Im{ ia(a + i)eit + i(a2 + 1)}| > a2 + 1− a

√
a2 + 1 > 0, showing that

k(t) never vanishes. We conclude that for some positive constants c1, c2

c1

s
≤ k(s) ≤ c2

s
.

One can produce many examples of infinitely long ends of M -parametrizable
curves by simple choosing any decreasing convex function λ(x) defined for all
x. Equation (2.7) together with the relation s(x) =

∫ x

−∞ λ−2(y)dy provide the
arclength and corresponding curvature function.
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4. Oscillation

Let u0 be a non-trivial solution of u′′+ 1
4k2u = 0, and let {sn}, be the sequence of

its zeros. This sequence may be unbounded from below or from above. Because u0

has constant sign on any interval Jn = (sn, sn+1), it follows that Γn = φ(Jn) is M -
parametrizable. In fact, the M -parametrization provided by Theorem 2.3 via equa-
tion (2.6) will have x range from −∞ to ∞. We can think of M -parametrizations
defined on consecutive copies of R that cover Γ. Our motivation here is to piece
them together by precomposing with the exponential map x = eit. This function
takes R onto the circle infinitely often, and by means of a Möbius transformation,
each copy of the circle can be identified with a different copy of R. The resulting
construction will provide a single parametrization ψ : R → Γ of the entire curve
Γ, in which the only contribution to S1ψ will come from the exponential. Thus
S1ψ = S1(eit) = 1/2. Equations (2.4) and (2.5) will now read

Ss(t) +
1
2
v2k2 =

1
2

, Sh =
1
2
k2 − 1

2
(h′)2 ,

and the function w = (h′)−1/2 will be a (positive) solution of w′′+ 1
4k2w = 1

4w−3.
We have found it easiest for the presentation to start from this result.

Lemma 4.1. Let λ = λ(x) 6= 0 be a solution of

λ′′ =
1
4
λ−3 (4.1)

on some interval I ⊂ R. Then λ extends to a non-vanishing solution of (4.1) on all
of R and ∫ ∞

−∞
λ(x)−2dx = 2π .

Proof. It is no loss of generality to assume that 0 ∈ I and that λ(0) > 0. Upon
multiplication by λ′, equation (4.1) can be integrated directly, and one finds that

λ(x) =
1
2a

√
4a4 + (x− b)2 ,

where the constants a, b are chosen to match up with the initial conditions of λ at
x = 0. A direct integration gives now the conclusion of the lemma. ¤

Theorem 4.2. Let p = p(s) be defined and continuous for s ∈ R. Let w 6= 0 be a
solution of

w′′ + pw =
1
4
w−3 (4.2)

on some interval J ⊂ R. Then w extends to a non-vanishing solution of (4.2) on
all of R. Furthermore, any solution of u′′ + pu = 0 vanishes on a given interval
[τ1, τ2] at most N + 1 times, with

N =
[

1
2π

∫ τ2

τ1

w(s)−2ds

]
. (4.3)
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Proof. Suppose, say, w > 0 on J . Fix s0 ∈ J and let u0 be a solution of u′′+pu = 0
for which u0(s0) > 0. For s near s0 we can write

w = ρ u0 ,

where ρ is positive. Equation (4.2) then becomes

u0ρ
′′ + 2u′0ρ

′ =
1
4
u−3

0 ρ−3 ,

which corresponds to

u2
0

(
u2

0ρ
′ )′ =

1
4
ρ−3 .

On the interval around s0 where u0 > 0 we consider the change of variable x = x(s)
for which d/dx = u2

0 d/ds, that is,

x(s) =
∫ s

s0

u−2
0 (τ)dτ . (4.4)

We see that the function
λ(x) = ρ(s(x))

is a solution of (4.1), which by Lemma 1, is defined and nonzero for all x. This
proves that w(s) extends as a positive solution of (4.2) as long as u0 remains
positive.

In order to show that w can be continued as a positive solution of (4.2) for
all s, we must analyze the behavior of ρu0 as s approaches a first zero of u0 to the
left or right of s0. We give the argument for s > s0, the case s < s0 being handled
similarly. Suppose that u0(s1) = 0 for the first time at some s1 > s0. Then

x(s) ∼ c1

s− s1
, s → s−1 ,

and so
lim

s→s−1
x(s) →∞ .

Since limx→∞ λ(x) →∞ at a linear rate, we see that ρ(s) ∼ c2/(s1−s) as s → s−1 ,
from which it follows that

lim
s→s−1

(ρu0)(s) = α

exists and is positive. Direct integration of (4.2) shows that w′(s) has a limit as
s → s−1 , proving that w can be continued as a positive solution across s = s1. This
argument can be repeated infinitely often if necessary, and proves that w extends
to a non-vanishing solution of (4.2) defined for all s.

Let J = [τ1, τ2] be any finite interval and let w be a solution of (4.2). Let
u0 be a non-trivial solution of u′′ + pu = 0 with u0(τ1) = 0. By the preceding
argument, we can write w = ρu0, allowing for cancelations at the zeros of u0. It
s1, s2 are consecutive zeros of u0 we see that∫ s2

s1

w(s)−2ds =
∫ s2

s1

[(ρu0)(s)]−2ds =
∫ ∞

−∞
λ(x)−2dx = 2π .
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This shows that the number of zeros of u0 in the interval [τ1, τ2] does not exceed
N +1, with N given by (4.3). By Sturm’s interlacing theorem, the same conclusion
holds for any solution of u′′ + pu = 0. This finishes the proof.

¤

In our final result we will consider equation (4.2) with p = 1
4k2. Let Z be the

set of zeros of a solution of

u′′ +
1
4
k2u = 0 . (4.5)

We call (4.5) oscillatory if Z is unbounded from above and below, oscillatory at
∞ if Z is bounded only from below, oscillatory at −∞ if Z is bounded only from
above, and non-oscillatory if Z is bounded.

Theorem 4.3. There exists a parametrization ψ : I → Γ which is onto and for
which S1ψ = 1

2 everywhere. The interval I is finite, of the form (a,∞), (−∞, b)
or equal to R according to whether the equation u′′ + 1

4k2 = 0 is not oscillatory,
oscillatory at ∞, oscillatory at −∞, or oscillatory.

Proof. Let w be any solution of (4.2) with p(s) = 1
4k2(s), and let

t = h(s) =
∫ s

s0

w(τ)−2dτ .

Because w′′ + 1
4 (k2 − w−4)w = 0 we have that

Sh =
1
2

(
k2 − w−4

)
.

Let ψ be defined by

ψ(t) = φ(s(t)) .

Then v = |ψ′| = w2 = (h′)−1 and

S1ψ = Ss +
1
2
w4k2 = −(Sh)(h′)−2 +

1
2
w4k2 =

1
2

. (4.6)

On the other hand, it follows from Theorem 2.5 that lims→∞ x(s) = ∞ exactly
when (4.5) is oscillatory at ∞, and similarly with the limit as s →∞. This finishes
the proof. ¤
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[6] O. Kobayashi, Projective structures of a curve in a conformal space, Progr. Math.
252, 47-51, Birkhäuser, 2007.
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